S10 Two-population LIF rate and spiking models: In the II mechanism the PAC depends very mildly on τ_{IE}

The parameters of Fig. S10 correspond to the II mechanism. The PACs barely change upon decreasing τ_{IE} from 100 ms (red) to τ_{IE} =10 ms (black) in the spiking as well as in the rate model. Note that in the spiking network the PAC of the E neurons exhibits a sharp peak on a short time scale. This corresponds to fast fluctuations generated by the spiking dynamics in the I population which are conveyed by the fast EI synapses to the E neurons. This sharp peak is not present in the corresponding rate model.

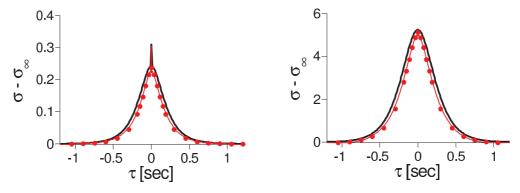


Figure S10: The PAC depends very mildly on τ_{IE} in the II mechanism PACs of the net inputs to excitatory (left) and inhibitory (right) neurons are plotted. All results are from numerical simulations. Parameters: $N_E = N_I = 16000$, K = 400, $I_0^E = 0.2$, $I_0^I = 0.1$, $J_0^{EE} = 0$, $J_0^{EI} = 0.8$, $J_0^{IE} = 3$, $J_0^{II} = 4$, $\tau_{EI} = 3$ ms; see also Fig. 16A in the main text. Solid lines and dots are for the LIF spiking and the rate models, respectively. $\tau_{II} = 100$ ms; $\tau_{IE} = 100$ ms (red), 10 ms (black).